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A kinetic description of heat transfer to a spherical particle from a plasma with 
allowance for charge-transfer processes is given in the cold ion approximation. 

One of the characteristics of plasma heating of particles of materials is that charges - 
negative electrons and positive ions - take part in heat transfer along with neutral mole- 
cules of the plasma-producing gas [i-i0]. Plasma electrons colliding with a particle recom- 
bine on the surface and are absorbed by the particle, and ions are neutralized by electrons 
in the material and are scattered by the surface in the form of neutral molecules. Because 
of the considerable difference between the average velocities of thermal motion of plasma 
electrons and ions [Ve/Vi ~ (miTe~/meTi~) I/2 >> i], a particle is electrified, acquiring an 
excess negative charge (potential ~f < 0), and a local electric field is formed near the 
particle, retarding incident electrons and accelerating ions so that the charge fluxes car- 
ried by them balance each other. 

The kinetic description of the interaction of a particle with a plasma consists of a 
simultaneous solution of the Boltzmann-Vlasov equations for the velocity distribution func- 
tions of molecules, electrons, and ions and the Poisson equation for the electrostatic poten- 
tial of the plasma. Methods of solving such problems have been developed in the specialized 
fields of probe diagnostics [ii, 12] and astronautics [13], in which principal interest has 
been devoted to the study of charge transfer, however, whereas the thermal aspects of the 
interaction of bodies with a plasma, which come to the fore in processes of plasma treatment 
of materials, have remained little studied. The solution of the kinetic problem is associated 
with considerable mathematical difficulties and can be carried out in generalform only by 
numerical methods. Analytical results in the problem of heat transfer from a plasma to a 
particle have been obtained only in certain limiting regimes: for weak (R~rD) [3, 4, 7-12] 
and strong (R >> r D) [5-12] Debye screening in a stationary [3-5, 8] and a moving [6, 7, 9, 
i0], rarefied, collisionless (R << s plasma. 

A rarefied plasma used to process particles of a material may be nonequilibriumone [Ii, 
12]. The simplest form of a nonequilibrium plasma is a two-temperature plasma [11-14], in 
which the electron temperature considerably exceeds the temperature of the heavy components - 
molecules and ions (Te~ >> Th~ ~ Ta~ = Ti~). 

In the present paper we describe heat transfer to a spherical particle at rest in a 
rarefied collisionless plasma, with an arbitrary relationship between the particle radius 
R and the Debye radius rD, in the limiting case Ti~/Te~ ~ 0. Solutions obtained for such 
a temperature ratio of the charge carriers are called the cold ion approximation [14]. 
Since the time of charge buildup on the particle turns out to be extremely short compared 
with the characteristic times Qf thermal and hydrodynamic processes [3-5], heat transfer is 
analyzed in a regime that is quasi-stationary with respect to the particle potential. Ther- 
moionic emission processes, important only for very high material temperatures and extremely 
low densities of charge carriers in the plasma [8], are ignored. 

The basic equations describing the transfer of charges and energy to a particle in a 
plasma are written in the following dimensionless form. The Poisson equation, the boundary 
conditions for the potential in the plasma, and the condition of equality of the electron 
and ion charge fluxes have the form 

A. A. Baikov Institute of Metallurgy, Russian Academy of Sciences, Moscow. 
from Inzhenerno-fizicheskii Zhurnal, Vol. 62, No. i, pp. 41-46, January, 1992. 
article submitted February 15, 1991. 

Translated 
Original 

1062-0125/92/6201-0031512.50 �9 1992 Plenum Publishing Corporation 31 



d~y _ 1 
dx~ x~ x~ (n~ - -  n~), ( 1 ) 

y(x  = O) = O, V(X = 1) = yr. (2 )  
�9 - -  / 2 - - -  

I~ = ( ~ / ~ ) ~  ]~ �9 ( 3 )  

Here  x = R / r ,  y = -e~; /kTe~,  y f  = - e ~ f / k T e ~  , n j  = N j / N j ~ ,  j j  = J 3 / J ~ ,  x D = rD/R , ~ = me/mi ,  

0 N j ~ ( k T j ~ / 2 ~ m j )  1/2 and r D ( k T e ~ / 4 ~ e Z N e ~ ) l / 2  T = T e ~ / T i ~ ,  where  J j  = = 

The m a c r o s c o p i c  p a r a m e t e r s  o f  t h e  p lasma m o l e c u l e s ,  e l e c t r o n s ,  and i o n s  ( d e n s i t i e s ,  
f l u x e s ,  e t c . )  a r e  d e t e r m i n e d  as  moments o f  d i f f e r e n t  o r d e r s  o f  t h e i r  v e l o c i t y  d i s t r i b u t i o n  
f u n c t i o n s .  From t h e  B o l t z m a n n - V l a s o v  e q u a t i o n  i t  f o l l o w s  t h a t  in  t h e  f r e e - m o l e c u l e  r eg ime  
t h e  d i s t r i b u t i o n  f u n c t i o n s  o f  p lasma p a r t i c l e s  r em a in  c o n s t a n t  a l o n g  t h e i r  t r a j e c t o r i e s  [11,  
12 ] .  E l e c t r o n  and i on  t r a j e c t o r i e s  i n  t h e  f i e l d  o f  a c h a r g e d  p a r t i c l e  a r e  c u r v e d ,  and in  
c a l c u l a t i n g  m a c r o s c o p i c  p a r a m e t e r s  i t  i s  more c o n v e n i e n t  t o  i n t e g r a t e  n o t  w i t h  r e s p e c t  t o  
v e l o c i t y  s p a c e ,  bu t  in  t h e  e n e r g y - a n g u l a r  momentum p h a s e  p l a n e  [ 1 5 ] .  

P lasma e l e c t r o n s  p o p u l a t e  two domains  i n  t h e  ~-~ p h a s e  p l a n e :  Ae, c o r r e s p o n d i n g  t o  
t h e i r  t r a j e c t o r i e s  t h a t  i n t e r s e c t  t h e  p a r t i c l e  s u r f a c e ,  and Be,  c o r r e s p o n d i n g  t o  t r a j e c t o r -  
i e s  b y p a s s i n g  t h e  p a r t i c l e  [ h e r e  ~=~/kT~,%=~/m~R2kTe~,  ~ =  (1/2)m~(v~+~)--e~(r) and ~ = 
m e r v t ] .  Domains A e and B e c o r r e s p o n d  t o  a l l  p o s s i b l e  v a l u e s  o f  X ~ 0; domain B e on t h e  
e n e r g y  s c a l e  i s  l o c a t e d  be low domain A e ,  s e p a r a t e d  f rom i t  by t h e  b o u n d a r y  X = 2(B - y f ) ,  
and i s  bounded below by t h e  l i n e  X = 2(~ - y ) / x  2. For  e l e c t r o n s  w i t h  a Max w e l l i an  v e l o c i t y  
d i s t r i b u t i o n  i n  t h e  u n p e r t u r b e d  r e g i o n  o f  p lasma f a r  f rom t h e  p a r t i c l e ,  t h e  d i m e n s i o n l e s s  
d e n s i t i e s  n j ( x ) ,  c h a r g e  f l u x  j ] ,  and k i n e t i c  f l u x  e ]  = E l / E l  [E~ = N j ~ k T j ~ ( 2 k T j ~ / ~ m j )  z /2 ]  
a r e  d e t e r m i n e d  by t h e  e q u a t i o n s  

n~ = (2n) s /~  [2(~ y ) _  x2~]x/2 , (4) 
Ae+Be 

1 [ ( (~ _ Yl) exp (--  ~) d~dx. (6) e T = ~  .... 
A e 

The p a r a m e t e r  v K ( t h e  i n d e x  K d e n o t e s  t h e  domain in  p h a s e  s p a c e )  f rom (4 )  t a k e s  t h e  v a l u e s  
v A = 1 (only electrons moving toward the particle exist in domain A e, since emission from 
.e 
xts surface ms absent) and v B = 2 (both electrons incident on the particle and those re- 

e 
flected by its field exist in domain Be). 

Integration of (4)-(6) results in the equations 
1 

n~ = exp (--  y) ~-- ]Texp (Yy - -  Y) erfc ( y / - -  y)i/2 + 

I 1 t + ~ ] -  ( __ x2)l/2 exp \ ~ ]  erfc \- 1__ x~ ] , (7 )  

iT = exp ( - -  y/), (8 )  

eT = exp ( - -  Yl). ( 9 ) 

If the particle's potential is sufficiently high (yf >> i), Eq. (7) for the electron 
density changes into the Boltzmann distribution n e = exp(-y). 

For ions with a Maxwellian distribution, the equations similar to (7)-(9) for the 
macroscopic parameters become very cumbersome and contain integrals of the potential with 
respect to the spatial coordinate, which considerably complicates their use. Various approxi- 
mations, based on replacing the unperturbed Maxwellian ion distribution by simpler model 
distributions, have therefore become popular. One such approximation - the cold ion approxi- 
mation -- is analyzed below as applied to the problem of heat transfer between a particle and 
a plasma. 

In the cold ion approximation (T = Tem/Ti~ + ~), the ion velocity increases only due 
to energy acquired in moving in the potential field of the charged particle, so that, using 
the condition of continuity of the ion flux, we can immediately write 
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Fig. Spatial distributions of potential y/yf (a) and den- 
sity nj of charge carriers (b) in the vicinity of the parti- 
cle in a two-temperature (~ ~ =) argon plasma; the upper 
branches are curves of density n i and the lower branches are 
of density ne; dashed lines: quasineutral solutions: i) x D = 
I, yf = 3.08; 2) 0.i and 4.34; 3) 0.01 and 4.98. 

1 lFx  ~ 
n ,  - -  - -  ' ( 1 0 )  2 (~-~y), t~ 

] . _  

e F  = - ~ - I i  ~Yf" (Ii) 

Equation (i0) relates the ion density n i to the ion flux jl and the plasma potential 
y at a given point x of the plasma. The ion flux jl as a function of the particle's poten- 
tial yf is given by Eqs. (3) and (8). It should also be noted that Eqs. (i0) and (ii) repre- 
sent the exact limit as �9 * ~ of kinetic theory for ions both with monoenergetic [ii, 12] 

and Maxwellian [Ii, 12, 15] distributions. 

The dimensionless total heat fluxes qj = Qj/E~ of each plasma component are calculated 
as 

qa = ]--Ts, (12) 

l ._ 

q~=er @--f ]~w~, (13) 

q,----eF+]7-{ 1 - -~ )  - - ~  t;D i , 
(14) 

where wj = Wj/kTj~, ~s = Ts/Th=, We = @e, and W i = I i - @e- In these equations we allow for 
the fact that in collisions of electrons and ions with the surface, in addition to the kine- 
tic energy imparted to the particle, the energy of their charge states, corresponding to the 
electron work function ~e and the effective ionization energy at the surface, I i - ~e, is 
imparted, and heat removal is accomplished by molecules and neutralized ions scattered dif- 
fusively by the surface. 

The Poisson equation (I), the right side of which depends on the boundary value y(1) = 
yf, was solved numerically by the finite-difference method. The equilibrium floating poten- 
tial yf of the particle, and hence the fluxes jj appearing in the equations for the densities 
n., are not known in advance and must be determlned in the course of solving the problem. 
T~e potential distribution y = y(x) in the plasma was found by choosing values of yf and 
dy/dx at the particle surface (x = I)for which the solution of the Cauchy problem obtained 
by assigning those values for Eq. (i) satisfies the boundary condition y = 0 at infinity 
(x = o ) .  

The spatial distributions of potential and of electron and ion density in a two-tempera- 
ture argon plasma for different relationships between the Debye radius and the particle rad- 
ius are shown in Fig. i. At a sufficient distance from the particle, outside the ispace-- 
charge layer, these distributions change into the corresponding quasi-neutral solutions of 
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Fig. 2. Dimensionless floating potential of the par- 
ticle and dimensionless fluxes of electron and ion 
charge and energy for a two-temperature (~ § ~) argon 
plasma as a function of the Debye screening parameter: 

"" * 3 )  * i) yf; 2) j = j$ : ee; e i. 

Fig. 3. Heat transfer to a metallic particle in a 
low-pressure argon plasma (p = 66 Pa, Tea = 15,000 K, 
Ti~ = 800 K): i) Qa; 2) Qe; 3) Qi; 4) Qt = Qa + Qe + 
Qi" Qj, W/ma; R, ~m. 

the equation ne(X, y) = ni(x, y). In the case of weak Debye screening (XD ~i) , the ions 
are efficiently trapped by the particle's field, which penetrates fairly far into the plasma, 
and their density near the surface exceeds their density in the unperturbed plasma. For 
strong screening of the electric field (x D << i), the ion density decreases as the particle's 
surface is approached. The density of electrons, which move in the particle's repulsive 
field, is lower near the absorbing surface than the unperturbed density in all cases. 

In Fig. 2 we give the dimensionless floating potential yf = -e~f/kTe~ of the particle 
and the dimensionless fluxes of charge JJ = JJ/J* and kinetic energy e3 = E3/E* of electrons 
and ions as a function of the screening parameter x D = rD/R of a two-temperature argon plasma, 
where J* = Ne~(kTe=/2~mi) I/2 and E* = Ne~kTe~(2kTe=/~mi )I/2. These quantities are normalized 
to the respective fluxes calculated from the electron temperature and ion mass, which enables 
us to reduce the quantities to the same scale, with j~ = pl/2j~, e~ = ul/2e~, jl = ~i/2j~, 
and e~ = ~S/2e~. As x D decreases from ~ to 0, the particle's potential yf undergoes a slow 
logarithmic.increase from 0 to -(I/2)in(2~a2p) = 5.18 [a = exp(-i/2) = 0.61], the fluxes 
j~ = j~ ~ e~ decrease from i/~ I/2 = 271 to (2~)i/2a = 1.52, and the flux of ion kinetic 
energy e~ first increases from 0 to a maximum of =50 at x D = 20 and then decreases to 
(~/2)i/2ayf = 3.94. This maximum is related to the fact that an increase in the absolute 
value of the particle's potential leads to an increase in the kinetic energy of the incident 
ions, on the one hand, and decreases the frequency of their collisions with the surface, on 
the other, since the fluxes of ion and electron charge must balance each other. 

As an illustration of the influence of charge transfer and of the size of the metallic 
particle on the heat-transfer intensity, in Fig. 3 we give calculated results for a low- 
pressure argon plasma [16] with the parameters p = 66 Pa, Ne~ = 6.5-i018 m -3, Te~ = 15,000 
K, and Tim = 800 K. In such a plasma the degree of ionization is q = 0.001, the mean free 
path is s > 300 ~m, and the Debye radius is r D = 3 ~m. Despite the low degree of ioniza- 
tion, the contribution of electrons and ions to the heat flux from the plasma to the particle 
considerably exceeds the contribution of neutral molecules. Charge-transfer processes are 
especially important in heat transfer for small particles, for which Debye screening of the 
electric field by the plasma turns out to be weak. The simplest estimates, based on the 
Richardson formula, show that under these conditions electron thermionic emission begins to 
affect the results at particle temperature T s exceeding 2000-3000 K, depending on the par- 
ticle's size and floating potential. 

The factors that determine the considerable contribution of electrons and ions to heat 
transfer to a particle in a two-temperature plasma include the following: i) electrization 
of the particle and penetration of its electric field into the plasma, leading to an increase 
in the ion flux to the surface; 2) a considerable increase in the kinetic energy acquired 
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by the ions in the potential field of the charged particle over the average energy of their 
thermal motion; 3) the energies of the charged states of electrons and ions and the energy 
of electron thermal motion considerably exceed the thermal energy of the molecules. 

NOTATION 

e, electron charge; ~, total energy; E~, kinetic energy flux density; Ii, ionization 
energy; J~, number flux density of plasma particles; k, Boltzmann constant; s mean free 
path; mj, mass; Nj, calculated density; p, pressure; Qi, heat-flux density; r, spatial coor- 

' n  - " " ! " ~ " dl ate; rD, Debye radzus; R, partzcle s radzus; Tj, temperature; v, veloclty; ~, degree of 
ionization; ~, plasma potential; ~i, floating potential of the particle; Ce' electron work 
function; ~, angular momentum. Indices: a, molecules; e, electrons; i, ions; h, heavy plasma 
particles (molecules and ions); r, radial component; s, surface; m, unperturbed region of 
plasma far from the particle; t, tangential component; -, direction toward the particle. 
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